100=-4.9t^2+30t+75

Simple and best practice solution for 100=-4.9t^2+30t+75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=-4.9t^2+30t+75 equation:



100=-4.9t^2+30t+75
We move all terms to the left:
100-(-4.9t^2+30t+75)=0
We get rid of parentheses
4.9t^2-30t-75+100=0
We add all the numbers together, and all the variables
4.9t^2-30t+25=0
a = 4.9; b = -30; c = +25;
Δ = b2-4ac
Δ = -302-4·4.9·25
Δ = 410
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-\sqrt{410}}{2*4.9}=\frac{30-\sqrt{410}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+\sqrt{410}}{2*4.9}=\frac{30+\sqrt{410}}{9.8} $

See similar equations:

| 5x-30=-4(4-3x) | | 3t+t=64 | | -56=-4(-4m+2) | | 3x4=8x+21x= | | 18=3v-6+3 | | 2l+l=24 | | (3x-4/2)=x+5 | | 27/5=135/m | | 6=7w | | m/8=100/10 | | 39+30+m=180 | | 3n^2–n–954=0 | | 6.5r-r=259 | | 6.5r−r=259 | | 244=78-v | | 2c+18=10c+12 | | 3b=4+20 | | 60+63+m=180 | | 6.5r-1=259 | | 6.5r-1=269 | | 6.5r−1=259 | | 38+m=180 | | 5x+4=7x-22 | | 3a=15+2a | | -15+3x=-15+3x | | -15+3x=-15+3 | | 3x²+75=0 | | 50c+80=5 | | 1.21=6*x | | 132+7x+20=180 | | 117+33+m=180 | | 44+m+53=180 |

Equations solver categories